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Abstract—Current Transformer-based methods typically un-
wisely represent the entire image at a single granularity. A
high-resolution representation of the regions of interest can
significantly improve the accuracy of human pose estimation
while causing unnecessary computational costs for other regions.
To overcome this limitation, we propose an efficient two-stage
framework using adaptive Multi-Granularity representation for
different important image regions for Human pose estimation
(EMGPose). In the first stage, the image is split into coarse-
grained patches for simple inference. If without sufficient ac-
curacy, important patches will be resplit into multiple finer-
grained patches for the second stage of inference. Furthermore,
we propose a new token-merge strategy based on token im-
portance and similarity in Transformer, effectively reducing the
computational load from low-information background patches.
Extensive experiments demonstrate the excellent performance
of the proposed method. Specifically, our model EMGPose-Base
achieves 76.3 AP (+0.5 AP) and 62.2 AP (+2.6 AP) and higher
efficiency than baseline ViTPose-Base on the COCO validation
set and OCHuman test set, respectively.

Index Terms—human pose estimation, multi-granularity, effi-
cient, two-stage, token merge

I. INTRODUCTION

Human pose estimation (HPE) is a fundamental task in
computer vision. It aims at locating anatomical keypoints of
the human body (e.g. head, shoulders, elbows, etc.) in an
image. HPE has been extensively researched and lays the
foundation for diverse downstream tasks, such as medical
diagnosis [1] and action recognition [2].

In recent years, human pose estimation has made signifi-
cant advancements with the predominant methods employing
output heatmaps and subsequently utilizing the peaks of the
heatmaps as keypoint locations. For instance, HRNet [3] and
Lite-HRNet [4] achieve rich semantic information and precise
localization by parallelizing multiple resolution branches of
convolutional neural network (CNN). Moreover, Transformer
and its variants are widely used in HPE tasks due to their
powerful ability to model long-range dependencies. Repre-
sentative TokenPose [5] and DTPose [6] regard keypoints as
learnable representations, establishing a link between visual
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Fig. 1: Image splitting example graph for different strategies,
where (a-c) are one-stage single granularity. (d-e) are two-
stage single granularity. (f) is our proposed two-stage multi-
granularity method. The red boxes in the figure indicate joints
coupling and the blue boxes indicate background redundancy.

and keypoint tokens through a combination of CNN and Trans-
former, which enables the extraction of pose features with
notable performance. Furthermore, ViTPose [7] suggests that
competitive performance in pose estimation can be achieved
without using an elaborate Transformer framework.

However, the localization of the body keypoints from an
image is often challenging due to the variations in occlusion,
truncation, scale, and human appearance. Prior research [8],
[9] has shown that utilizing high-resolution representations
can enhance regression accuracy but at the cost of greatly
increased computation. This presents a significant challenge
for Transformer-based models, where the computational com-
plexity grows quadratically with the number of input patches.
The number of patches is closely tied to the splitting strat-
egy selected by the Transformer-based HPE model. Current
methods [5]–[8] primarily use a single granularity for image
splitting (as shown in Fig.1). From this, it can be analyzed that
many image patches lack effective contextual information and
vary in importance. Excessive coarse splitting (Fig.1(a),(d))



can couple multiple joints in a single patch, which leads
to the under-representation of important keypoints. Excessive
fine splitting (Fig.1(c),(e)) renders the wastage of compu-
tational resources. Therefore, inspired by [10], considering
the differences in information density of each image patch:
Image patches should be characterized at varying granularity
according to their keypoint information content.

Furthermore, Fig.1 illustrates that there are still numerous
low-information background patches in either image-splitting
method, which increase with finer granularity. To alleviate this
burden and enhance efficiency, many works [11]–[16] focus on
token compression. In common methods, token merge [11]–
[14] typically merges tokens with high similarity on the basis
of a similarity matrix. Meanwhile, token prune [15]–[17]
identifies and discards unimportant tokens based on specific
criteria, which results in the loss of detailed edge information
and consequently poor performance. For example the token-
Pruned Pose Transformer (PPT) [17] incorporates a human
token identification module with attentional token pruning.
SHaRPose [8] employs a two-stage framework that transitions
from coarse to fine to speed up inference. However, it per-
forms poorly on low-resolution images due to the limitations
of single granularity segmentation. Although these methods
accelerate Transformers, they greatly sacrifice accuracy.

Based on the above, we present EMGPose, a human pose
estimation architecture for multi-granularity modeling based
on the pure Transformer. This approach aims to improve
prediction accuracy while optimizing the computational cost.
To reduce the computational burden, the patches with strong
correlations to body keypoints are re-split at varying granular-
ity of importance. Moreover, the weakly correlated background
patches mentioned above are gradually fused in the subsequent
processing by our proposed merge module. Overall, the main
contributions of this paper are as follows:

• EMGPose employs a two-stage multi-granularity HPE
framework, which adaptively accounts for the differences
in the importance of the image patches in pose estimation.

• We propose a Weighted token merge module Based on
the synergy of Attention scores and Similarity matrices
(WBAS), which compresses the tokens while maintaining
decent accuracy.

• EMGPose shows superior performance while improving
the efficiency of the pure Transformer model in the pose
estimation task. On the universal MS COCO dataset, our
proposed model outperforms the state-of-the-art methods.

II. METHOD

A. Overall Structure

As depicted in Fig.2, EMGPose contains two stages with
a shared keypoint heatmap head and Transformer blocks.
Each image is initially subjected to the Coarse-Granularity
Stage (CGS), which incorporates a Transformer and a Quality
Predictor. If the Predictor deems the result unacceptable, the
process progresses to the Multi-Granularity Stage (MGS). The
MGS encompasses a patch Re-Patchfy module, a Feature

Reuse module, a WBAS module, and a Transformer that shares
parameters with the Coarse-Granularity Stage.

In this section, we will present our framework stage-by-
stage and give a detailed introduction to each module.

B. Coarse-Granularity Stage (CGS)

The objective of this stage is to identify keypoints in the
coarse-grained image and ascertain their acceptablity for the
Quality Predictor. For challenging pose input images, the
importance scores obtained during the CGS process are used
to efficiently select the important patches for the next stage.

Coarse-grained Input. Firstly for efficient coarse-grained
inference, we use the downsampled copy X′ ∈ R(H/2×W/2×C)

of the input image X ∈ R(H×W×C) for simple inference.
Similar to standard Vision Transformers (ViT), which utilize
fixed-size 2D patches for segmentation. With the addition of
auxiliary information tokens, the token input about the CSG
can be represented as follows:

IC0 = Patchfy(Downsample(X)) + EC
pos ∈ RN×D (1)

XC
0 = Concat(KC

0 , IC0 , q0) ∈ R(T+N+1)×D (2)

where N represents the number of image patches and C
stands for CGS. The patches are subsequently mapped into
D-dimension tokens by patch embedding. Additionally, po-
sition embedding EC

pos is included to enrich position in-
formation. T learnable D-dimensional embedding vectors
KC

0 = {ki,C0 }Ti=1 are employed to represent T body key-
points. Additionally, a learnable quality token q0 is utilized
to estimate confidence results. An L-layer ViT then processes
the input sequence to obtain the output sequence XC

L =
[k1,CL , k2,CL , ..., kT,C

L , i1,CL , i2,CL , ..., iN,C
L , qL], each layer com-

prises a Multi-Head Self-Attention (MHSA) module and a
Feed-Forward Network (FFN). We can represent the output
Xl+1 of layer l + 1 as follows:

X
′

l = MHSA(Xl) +Xl, Xl+1 = FFN(X
′

l ) +X
′

l . (3)

To obtain the result of CGS inference, we take out
the corresponding keypoint tokens KC

L = {ki,CL }Ti=1 from
the output sequence XC

L that has undergone L-layer Vision
Transformer inference and put them into the Heatmap Head
consisting of Multilayer Perceptron (MLP):

RC = Head(KC
L ) ∈ RM×Ĥ×Ŵ . (4)

Here RC represents the regression heatmap results obtained
at the CGS stage. The size of the heatmap, represented by
Ĥ×Ŵ , is equivalent to one-quarter of the original input image
size H and W.

Regression quality judgement. Our method used to evalu-
ate the quality of the regression outcome follows the classical
two-stage approach [8], [18]. That is, leveraging a learnable
quality embedding q0 to extract information from visual and
keypoint tokens during the inference, resulting in reasonable
quality features qL. Subsequently, qL was fed into the Quality
Predictor module, which produced the quality score Q. For
simplicity and efficiency, we use MLP as this predictor thus



Fig. 2: The overall structure of EMGPose. The Global Keypoint Importance Score (GKIS) yielded by the Transformer
in the Coarse-Granularity stage is used for selecting keypoint-related important patches in the Multi-Granularity stage to
re-patchfy the image. The parameters of the Transformer blocks and the Heatmap Head are shared between the two stages.

obtaining the quality score Q = MLP (qL). We introduce
a threshold η as a criterion for deciding whether to accept
the coarse result RC . If Q > η, the inference process ends
immediately, and RC becomes the final prediction output.
Otherwise, the input image must undergo further estimation
by entering the Multi-Granularity Stage. Notably, η strikes a
balance between performance and computational efficiency.

C. Multi-Granularity Stage (MGS)
Higher resolution (i.e., Finer granularity) usually leads to

higher accuracy. However, since computational resources are
limited, we only use fine-grained representation at important
locations. We use the attention computed in the previous stage
as an importance score (IS) that reflects the correlation be-
tween image patches and keypoints without extra computation.

ISl =
1

HT

T∑
i=1

H∑
h=1

Al
i,h ∈ RN , (5)

where Al
i,h represents the attention vector of the i-th keypoint

token from the l-th layer of ViT with the image tokens at the
h-th head. H and T indicate the number of heads of MHSA
and the number of keypoints, respectively. To represent token
importance more accurately and stably, we use the exponential
moving average (EMA) to combine the attention score of
Transformer layers:

ÎS
l
= β · ÎS

l−1
+ (1− β)ÎS

l
, (6)

where β = 0.98 and attention is unstable at shallow layers, so
calculations are averaged over EMA from l > 3 onwards. The
final layer’s ÎS

L
is used as the Global Keypoints Importance

Score (GKIS) to discriminate patches.
Re-Patchfy. As illustrated in Fig.2, image tokens are cate-

gorized into three levels of importance according to the GKIS:
high, middle, and low. Each category is numbered as:

Nh = ⌊N · rh ⌋ , Nl = ⌊N · rl⌋ , Nm = N −Nh −Nl, (7)

where rh and rl represent the rate of high-score and low-
score patches, respectively. Given that the high-score patches
contain the most crucial keypoint information, each of them
will be subdivided into 3×3 fine-granularity patches. The
medium-scored patches have the second most important
keypoint information, and each patch will be subdivided
into 2×2 strand-granularity patches. Conversely, the low-
scored patches will retain their original coarse-granularity.
Re-Patchfy image token sequence is represented as: IM0 =

[̂i1,M0 , î2,M0 , ..., î
Nf ,M
0 ] ∈ RNf×D, where Nf = 9 × Nh +

4 × Nm + Nl represents the number of image patches after
repartitioning and M stands for MGS.

Feature Reuse. Multi-granularity splitting weakens the
correlation between image patches. To address this limitation,
We reuse the image feature ICL = {ij,CL }Nj=1 extracted from
the CGS output sequence XC

L , which contains rich global
correlation information. The feature ICL is first processed by
the MLP layer to enhance the interconnection between the
features. These feature tokens were then interpolated to 4 ×
and 9 × to align the re-pathfied image token sequence IM0
following the same processing as Re-Pathfy. Denote as:

XFR = FR(ICL ) = [i1fr, i
2
fr, ..., i

Nf

fr ]. (8)

Ultimately, the input sequence of the Multi-Granularity Stage
can be represented as:

XM
0 = Con(KM

0 , (IM +XFR+EM
pos)) ∈ R(T+Nf )×D, (9)

where Con stands for Concat operate and KM
0 = {ki,M0 }Ti=1 is

the same initial keypoint embedding as in (2). EM
pos represents

the positional embedding of MGS.
WBAS. The multi-granularity representation still has many

low-information tokens resulting in the computational burden.
Token prune usually loses image information and token merge
only considers the similarity that may result in the important
tokens being merged, both of which will lead to a significant



Fig. 3: WBAS Detail Schematic. WBAS adopts the three-way
decision for Head, Middle, and Last tokens to adopt different
suitable strategies to deal with them.

TABLE I: Configurations of the EMGPose models.

Method Feat. Dim. Depths rh/rl rH/rL Merge Layer

EMGPose-Small 384 12 0.1/0.4 0.5/0.1 [ 4 , 7 , 10 ]
EMGPose-Base 768 12 0.1/0.4 0.5/0.1 [ 4 , 7 , 10 ]

reduction in accuracy. To address this issue, we refine them
further to compress tokens while maintaining decent accuracy.

Unlike earlier merge methods, our approach builds on our
previous idea that different tokens with varying importance
should be handled distinctly. Therefore, we also use three-way
decisions to make different merge strategies for tokens with
different importance levels. The importance judgment uses (5)
to calculate the importance score (IS) of the current layer.
The tokens are classified into three categories according to
the IS: Head, Middle, and Last. The number of tokens in each
category is controlled by setting the ratio rH and rL of the
Head and Last tokens. As shown in Fig.3, the Head tokens
remain unchanged. The optimization of the Middle tokens
Tmid = {ti}ni=1 is achieved according to the following rules:

• Divide Middle tokens into two sets: A = {t1, t3, ..., tn−1}
and B = {t2, t4, ..., tn}.

• A fully connected bipartite graph is constructed be-
tween the tokens in two sets based on cosine similarity.

• Retain edges from a token in set A to the token in set B
that indicates the highest similarity only.

• Tokens that remain connected by edges are considered as
a group, and the importance scores after softmax are
used as weights to average tokens within the group.

For Last tokens, the importance scores are directly weighted
using softmax values to merge them into a single token.

We use the WBAS module for layers 4, 7, 10 of ViT in the
Multi-Granularity Stage to implement token compression. The
final output sequence is obtained as XM

L . Finally, the keypoint
tokens KM

L are fed into the shared heatmap head defined in (4)
to obtain finer inferred heatmap results RM = Head(KM

L ).
Training Strategies. The training objective for EMGPose

is to supervise two stages of output heatmaps and quality

Fig. 4: illustrative figure of keypoint results for EMGPose-
Base and SHaRPose-Base on the OCHuman dataset.

predictors. First, for the heatmap, we employ the mean squared
error loss (MSE), represented as follows:

Lh(R) =
1

T

T∑
i

LMSE(R
i, Hi

gt), (10)

where Hi
gt represents the ground-truth heatmap of the i-th

keypoint. Furthermore, Object Keypoint Similarity (OKS) [19]
functions as a common metric for assessing the accuracy (i.e.,
confidence) of human keypoint results against the ground truth.
Therefore, to enhance the reliability of the quality predictor,
we apply an L2-norm loss between the quality score Q and
the OKS calculated with the results of the Coarse-Granularity
Stage RC . In summary, the total loss function is as follows:

L = Lh(R
C) + Lh(R

M ) + λ ∥ Q−OKS(RC) ∥2 . (11)

III. EXPERIMENTS

A. Experiments Setup

Dataset. We evaluated the performance of EMGPose on
the MS COCO [21] and OCHuman [22] datasets. we utilize
the COCO 2017 dataset, which consists of more than 200k
images and 250k human samples labeled with 17 keypoints.
The dataset is divided into 3 subsets: train, valid, and test-
dev, which contains 150k, 5k, and 20k samples respectively.
Moreover, the OCHuman dataset, designed to solve the prob-
lem of high occlusion in human images, contains 5081 images
totaling 13,360 human instances, making it the most complex
and challenging dataset related to humans. We use the standard
Average Precision (AP), Average Recall (AR), and Throughput
as the main evaluation metric to assess the model performance.

Implementation Details. In this paper, all our experiments
use a 16×16 patch size for splitting the images. We instantiate
EMGPose with two different sizes by scaling the embedding
size. The detailed configurations of the instantiated EMGPose
models are presented in TableI. In the course of EMGPose
training, we always set the confidence threshold η = 1, which
implies that all images need to be inferred by MGS. Following
[8], we set λ = 0 in the first 180 epochs and λ = 0.03
in the subsequent epochs. To ensure a fair comparison, all



TABLE II: Comparisons on the COCO valid and test-dev sets. No extra training data is involved for all results. The Throughput
of all methods is recorded on a single RTX4090 GPU with a batch size of 64. The best result is highlighted in bold.

Model Input COCO val2017↑ COCO test-dev2017↑ Throughput↑ GLOPS↓
AP APL APM AR AP APL APM AR

Dtpose-T [6] 256×192 69.4 75.5 66.6 75.3 68.9 75.0 65.6 73.8 863.6 2.2
ViTPose-Small [7] 256×192 73.8 75.8 67.1 79.1 73.1 78.5 70.1 78.5 1088.3 5.7

SHaRPose-Smalll [8] 256×192 74.2 80.3 71.2 79.5 73.6 79.0 70.7 79.0 1290.6 4.9
EMGPose-Small 256×192 74.6 81.1 71.6 79.9 73.8 79.3 70.9 79.2 1251.9 4.6

HRNet-W48 [3] 256×192 75.1 81.8 71.5 80.4 74.6 80.3 71.2 79.9 598.7 15.8
HRFormer-Base [20] 256×192 75.6 82.6 71.7 80.8 74.5 80.3 71.1 79.8 180.6 13.8
TokenPose-L/D24 [5] 256×192 75.8 82.7 72.3 80.9 75.1 81.1 71.7 80.2 456.9 11.0

PPT-L/D6 [17] 256×192 75.2 82.4 71.7 80.4 74.3 80.6 71.2 79.6 669.4 9.2
Dtpose-B [6] 256×192 75.7 82.8 71.9 80.7 74.8 80.8 71.2 79.8 533.8 10.6

ViTPose-Base [7] 256×192 75.8 78.4 68.7 81.1 75.1 80.7 72.0 80.3 614.6 18.6
SHaRPose-Base [8] 256×192 75.5 82.2 72.2 80.8 74.5 80.2 71.2 79.8 712.8 17.1

EMGPose-Base 256×192 76.3 83.1 72.5 81.3 75.4 81.1 72.1 80.5 688.8 17.1

TABLE III: Quantitative results from the OCHuman test set.

Method Input AP ↑ AP 50 ↑ AR ↑ AR50 ↑

HRNet-W48 [5] 384×288 61.6 74.9 65.3 77.3
HRFormer-B [6] 384×288 49.7 71.6 58.2 76.0
ViTPose-Base [7] 256×192 59.6 74.7 64.1 77.8
SHaRPose-Base [8] 256×192 60.2 76.8 64.5 79.3
EMGPose-Base 256×192 62.2 78.1 66.6 80.7

experiments presented in this paper are conducted using the
MMPose [23] framework and the default data pipelines. Other
optimal settings are set the same to ViTPose. To explore the
potential of a pure Transformer model, both MAE [24] pre-
training weights and Unbiased Data Processing (UDP) [25]
post-processing are used in our approach.

B. Results

Comparison to state-of-the-art methods on MS COCO.
To demonstrate the effectiveness of our dynamic framework in
Human Pose Estimation(HPE). Table II shows the performance
and efficiency of our proposed method with several state-of-
the-art HPE methods on COCO valid and test-dev sets. We
can see that we have achieved significant performance gains.
For example, our EMGPose-Small model achieves 74.6 AP
(+0.8 AP) and 73.8 (+0.7 AP) over ViTPose-Small in two
sets respectively, and nearly 1.2x higher throughput, outper-
forming other methods in all accuracy metrics. Similarly, our
EMGPose-Base model achieves 76.3 AP on the valid set.
Notably, compared to the previous efficient models in HPE,
SHaRPose-Base and PPT-L/D6, our model increases by a
minimum of 0.8 AP at less than a 4% reduction in speed
only. Our model also demonstrates faster inference speed than
ViTPose-Base, TokenPose-L/D24, HRFormer-Base, HRNet-
W48, and Dtpose-B, with superior accuracy. In addition, It
can be observed that although the GFLOPS of EMGPose is
not lower than that of Tokenpose, PPT, and other frameworks
based on the combination of CNN and Transformer, it obtains
a better trade-off between throughput and accuracy, showing
that the pure Vision Transformer framework has strong repre-
sentation ability and is friendly to modern hardware.

TABLE IV: Comparison of different Splitting strategies.

Splitting Strategy AP AR Throughput GFLOPs

Coarse 52.0 66.2 2018.4 1.2
Standard 73.8 79.1 1088.3 5.7
Fine 75.7 80.9 460.3 13.4
Coarse-Standard 74.1 79.5 1290.6 4.9
Coarse-Fine 75.5 80.9 862.2 7.3
Coarse-Multi 75.4 80.7 1104 5.6

TABLE V: Comparison with efficient Transformers.

Method AP AR Throughput GFLOPs

Original 74.0 79.4 1290.6 4.9
EViT [15] 71.4 77.0 1438.5 3.52
DynamicViT [16] 69.2 75.1 824.6 3.52
ToMe [11] 71.6 77.3 1430.2 3.48
LF-ViT [18] 72.5 78.3 1282.3 4.51
WBAS(w/oa weighted merge) 72.8 78.6 1482.4 3.62
WBAS(w/o three-way decisions) 71.8 77.6 1389.6 3.48
WBAS 73.5 79.0 1441.2 3.85
aw/o stands for without

Comparison to state-of-the-art methods on OCHuman.
We migrate the models with MS COCO data for training to
test on the OCHuman dataset. The quantitative results on the
test set are displayed in Table III. Our EMGPose performance
is superior to other methods, even to the higher resolution
of HRNet and HRFormer. For this significant enhancement
we selected one of the outstanding single-grained methods,
SHaRPose, for visualization and analysis. As shown in Fig.4,
which shows that our EMGPose mitigates joints coupling (e.g.
the part marked by the red circle in the figure) and achieves
more accurate keypoint localization in the face of dense and
occluded keypoint images compared to SHaRPose.

C. Ablation Study

Splitting Strategy. Choosing an appropriate granularity for
image splitting is crucial in HPE as it affects accuracy and
computation complexity. To verify the effectiveness of multi-
granularity splitting, we use the ViTPose-Small as the baseline
model and use the one-stage, two-stage single-granularity, and
our multi-granularity strategies sequentially. the results are
shown in Table IV, where Standard granularity refers to the
256×192 resolution image. Coarse and Fine represent its 1/2



TABLE VI: The effect of r at different settings

rh / rl AP GFLOPS

0.1 / 0.5 74.3 4.33
0.15 / 0.5 74.3 4.48
0.1 / 0.4 74.6 4.56

0.15 / 0.4 74.7 4.72

rH / rL AP GFLOPS

0.5 / 0.15 74.3 4.48
0.5 / 0.1 74.6 4.56
0.6 / 0.15 74.5 4.64
0.6 / 0.1 75.0 4.72

and 3/2 times resolution feature representation respectively.
The two-stage approach offers a superior balance between
accuracy and efficiency. Although fine-grained splitting attains
optimal accuracy, it is remarkably resource-intensive. Conse-
quently, our Multi-granularity strategy, which entails a 0.3 AP
reduction in exchange for a 2.4x speed enhancement compared
to fine-grained, is no doubt a rational choice.

Token Compression Policy. To demonstrate the superior
performance of our proposed WBAS module, we compare
it with several token compression policies. In addition, we
performed ablation experiments without three-way decision
and weighted merge to investigate the effect of our proposed
fusion method. As shown in Table V, although our GFLOPS
are higher than EViT and ToMe, we are not inferior in terms
of real-world throughput and demonstrate that our method
performs best in maintaining accuracy.

Ratio r. The two pairs of hyperparameters r are essential for
managing the sparsity of the multi-granularity representation
and the strength of redundant token fusion, which impacts
the performance of EMGPose. rh / rl controls the number
of tokens in multi-granularity representation. Most important
information exists in a few high-score patches, a little in low-
score patches. rH / rL controls the number of Head and Last
tokens in the merge phase. We selected several competing
control groups, the results of which are shown in Table VI.
Above all, we set rh/rt = 0.1/0.4 and rH/rL = 0.5/0.1
respectively to match the speed-accuracy trade-off.

D. Conclusion

In this paper, we have proposed EMGPose, a two-stage
efficient pose estimation framework that achieves a well-
balanced trade-off between performance and computational
cost. With Re-Pathfy, we strategically utilize varying levels
of feature representation granularity for patches of differing
importance. In addition, our proposed WBAS introduces a
three-way decision mechanism and incorporates a weighted
fusion of attention and similarity to achieve token compres-
sion applicable to the pose estimation task. Our quantitative
experiments demonstrate the high accuracy and efficiency of
our model. This work presents a pathway for investigating an
efficient Transformer-based pose estimation framework.
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